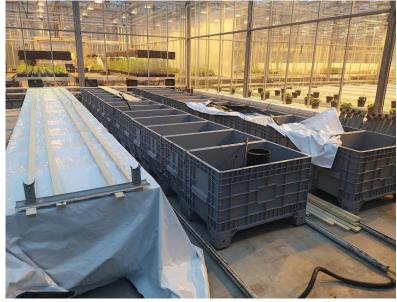
Nutrient deficiency symptoms and uptake relations in juvenile Hazelnut (*Corylus avellana*) in response to macro nutrient supply

Tommaso Barbagli, Wim Voogt,

Mineral Nutrition Project


- Creation visual diagnostic guide that shows macronutrients deficiencies on *C. avellana* juvenile plants
- Recording of macro-nutrient uptake of juvenile C. avellana
- Reference data for mineral tissue content

Material and methods

- Nutrient solutions with 50 % and 100 % reduction of macro nutrients
- Plants in 10 I. container, with fine perlite
- 13 Treatments: 3 replicates, 3 plants
- Drip irrigation, high drainage rate, recycling
- Greenhouse conditions Wageningen (NL) feb-'21 June '21

Treatments table

Treatment Code	Ν	Р	K	Ca	Mg	S	
1	+	+	+	+	+	+	
2	50%	+	+	+	+	+	
3	+	50%	+	+	+	+	
4	+	+	50%	+	+	+	
5	+	+	+	50%	+	+	
6	+	+	+	+	50%	+	
7	+	+	+	+	+	50%	
8	-100 %	+	+	+	+	+	
9	+	-100 %	+	+	+	+	
10	+	+	-100 %	+	+	+	
11	+	+	+	100 %	+	+	
12	+	+	+	+	-100 %	+	
13	+	+	+	+	+	-100 %	

How its done

Treatments																						
	ratios mmol/mmol				sum me/L				concentration mmol/L													
			14	6.		c			- NI	с м/г		(5		A with the		K	6-	N4-	NOT	cl	604	
		Р	K	Ca	Mg	5	Ca/Mg K/	Mg K/	Ca N/	S N/F	> S/	ν <u>Ρ</u>	Cations	Anions	NH4	К	Са	Mg	NO3	Cl	SO4	Р
Ref	+	+	+	+	+	+	2.31	2.08	0.90	28.7	11.4	0.4	14.95	14.95	1.36	3.25	3.61	1.56	12.92	0	0.45	1.13
50 % N	-	+	+	+	+	+	2.31	2.08	0.90	4.6	2.7	0.6	14.95	14.95	1.36	3.25	3.61	1.56	6.46	3.29	1.40	2.40

Fe	Mn	Zn	В	Cu	Мо
31.63	18.07	6.78	31.63	1.36	0.45

zε

Measured parameters

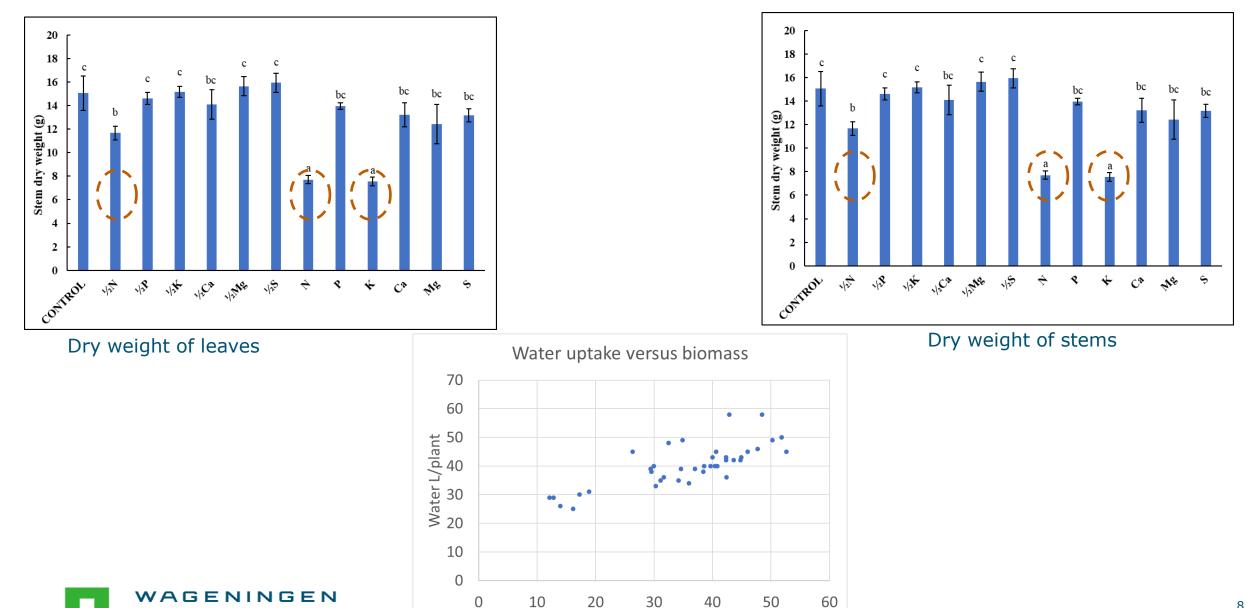
- Fresh/Dry weight of plants at the start and the end of experiment.
- Nutrient content of plants at the start and the end of experiment.
- Amount of nutrient solution at the start and the end of experiment.
- Nutrient content of of nutrient solution at the start and the end of experiment.

Systematic gathering of RGB images

- The Robin PSI PlantScreenTM system
- DSLR Digital Camera
- Approx every 2 weeks ALL PLANTS

Date of Photos (Treatment started on 15th/17th of march)

6 April	
21 April	
29 April	
14 May	
27 May	
07 June	


Results biomass

UNIVE

RSI

8

RESEARCH

Biomass g/plant

0

Nutrient deficiencies

Reference plant

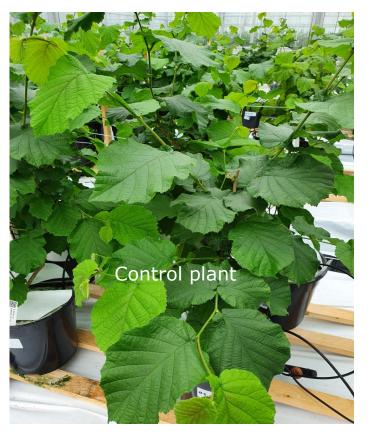
Next slides:

- Symptoms where ?
- First symptoms
- secondary symptoms
- Typical phenomena
- Performance of 50 % treatments

Nitrogen (N)

- Symptoms in all leaves
- First: older leaves become yellowish, from leaf margin to inside
- Later: discoloration progressive, also younger leaves, typical chlorosis, green veins.
- Necrosis at leaf margins, eventually leaf senescence
- Very strong growth reduction
- 50 % same but less extreme

Phosphorous (P)


Characteristics

- No symptoms appeared
- Some anthocyanosis, but not specific in the -P treatments

WAGENINGEN

RESEARCH

- Growth slightly reduced
- 50 % no symptoms

Purple colouring (anthocyanine)

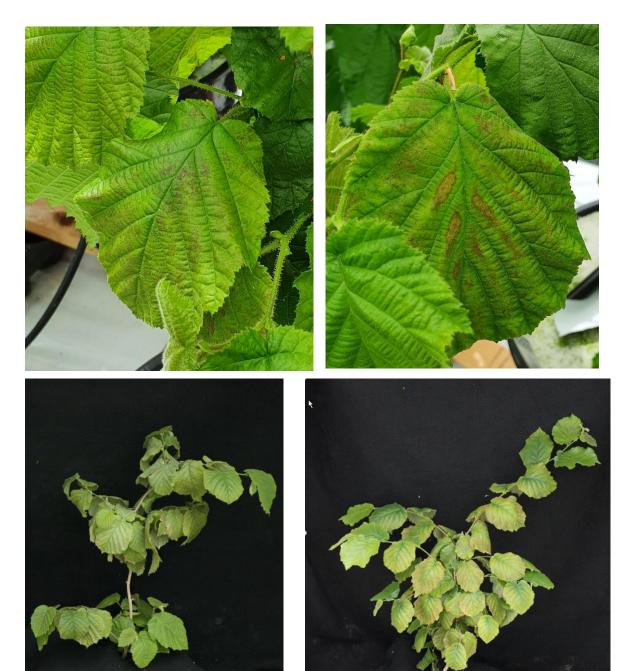
Occurring at low P

But also at other treatments

Indicator of stress ?

Sulfur (S)

- Symptoms in young and old leaves
- First: very light chlorosis in top leaves
- Older leafs turned pale green
- Complete plant more light green
- Not easy to distinguish
- Growth slightly reduced
- 50 % hardly symptoms



Potassium (K)

- Symptoms in old leaves
- First: brown/reddish intravenous necrotic spots
- Later: discoloration, yellowing of leaves, necrotic spots turned into nectrotic stripes
- Very poor growth
- Young leafs no symptoms but smaller size
- 50 % no symptoms

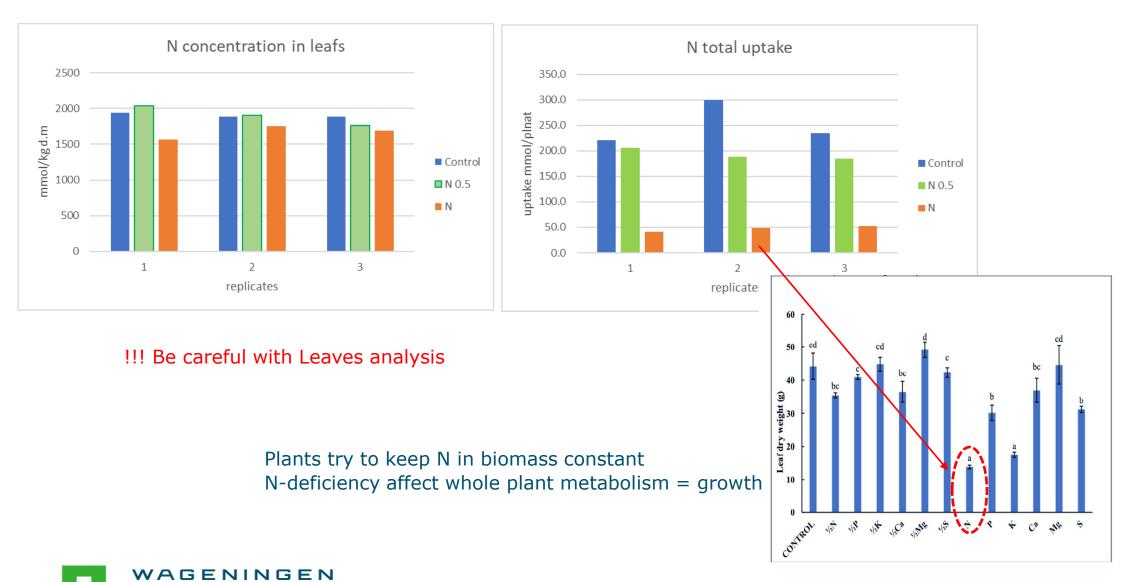
Magnesium (Mg)

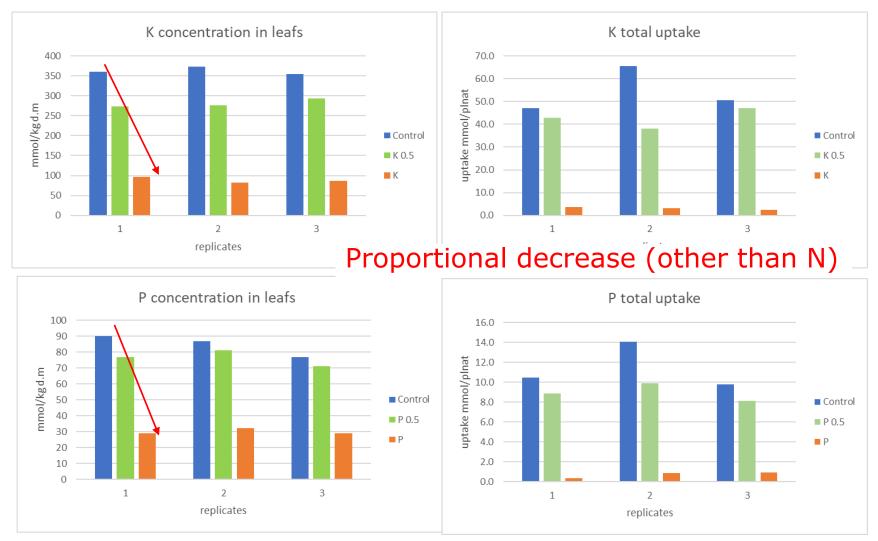
- Symptoms in old / mid leaves
- First: light chlorosis between veins, veins stay green
- Later: necrotic spots
- Eventually some leaf senescence
- Young leafs no symptoms
- No growth reduction
- 50 % no symptoms

Calcium (Ca)

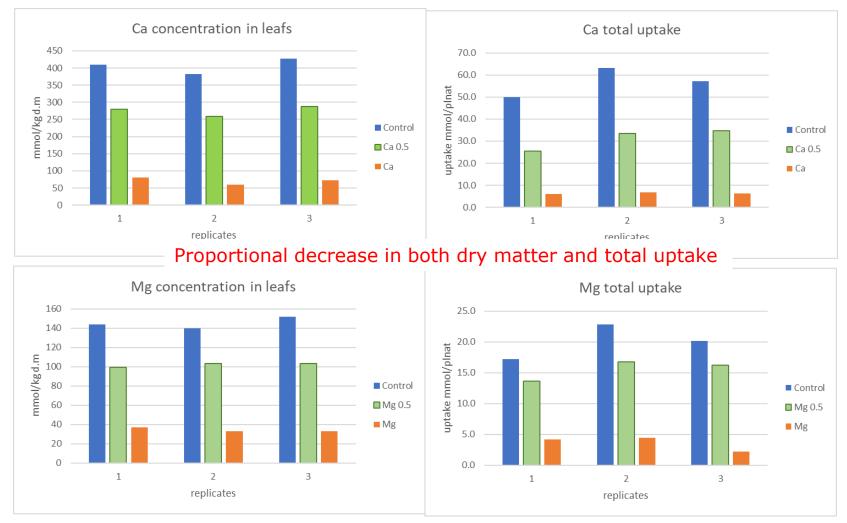
- Symptoms in young leaves only
- First: necrotic lesions at leaf margins in shoot tops
- Young leaves became 'cupped'
- Necrosis in whole leaf : <u>tipburn</u>
- Growth slightly reduced
- 50 % less incidence symptoms

Note


- Anthocyanosis appeared in many plants, not only in P-treatments
- Tipburn appeared in many plants. Though 100 % in zero Ca.
 - Likely physiological disorder, quite common for greenhouse conditions
 - and outdoor also with excessive transpiration

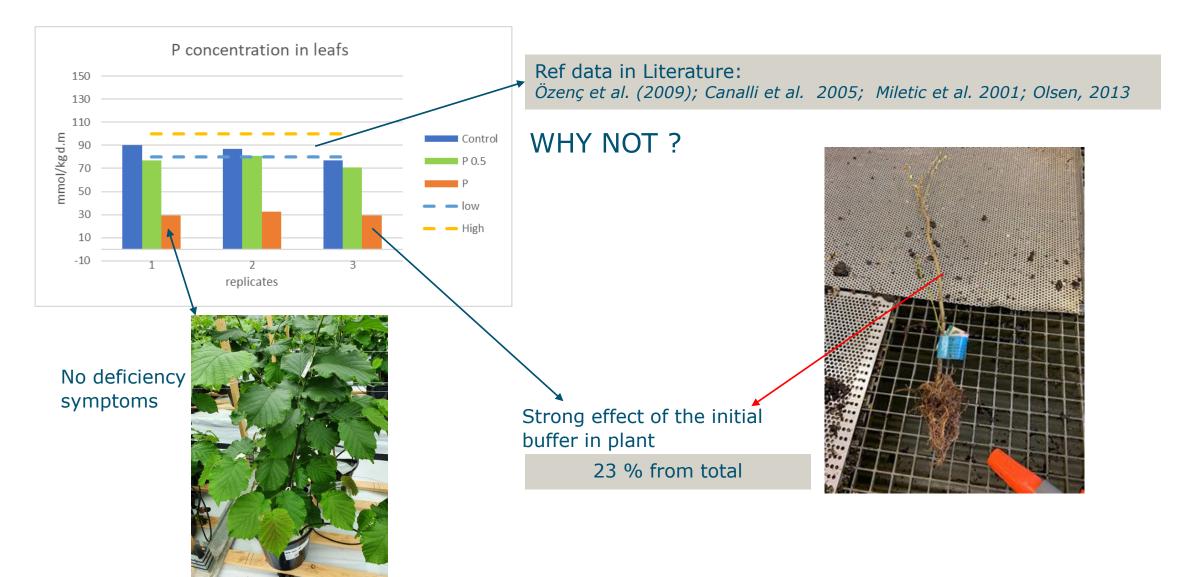

Nutrient in plant material

NIVERSITY & RESEARCH


Figure 3.13. Average dry weight of leaves at harvest of C. avellana plants under 13 nutrient treatments. Error bars represent SE (n=3). Different letters indicate significantly different means within treatments (P < 0.05).

K and P in plant material

Ca and Mg in plant material



About P

WAGENINGEN

NIVERSITY & RESEARCH

Discussion / conclusion

- N, K, Mg, S clear response to treatments clear symptoms
- Ca somewhat blurred by `physiological disorder effects'
- P- no symptoms, due to
 - Starting material (20 % in initial plant) ?
 - Overruled by growth reduction ?
 - Anthocyanin is a sign ?
- Uptake: K, Ca, Mg Cations:
 - Strikingly low K in tissue
 - Clear linear response, adaptation of cell concentration
- N
- Symptoms, very strong response to supply
- Plant growth strong reduced due to cell concentration

Eventually....

Coming up next

Experiment with micro nutrients

- Two years:
- 1st year initiation (outside grown), Feb 2022
- 2nd year greenhouse (as macro nutrient trial), Feb 2023
- Both deficiency and toxicity
- Including Al
- Repeat P-deficiency

Impression year 1

- Visible growth reduction in P
- Light chlorosis in Fe Mn

Thanks for the attention

This project was made possible by financial support from Ferrero Hazelnut Company

Tommaso.Barbagli@wur.nl

